986 resultados para NICKEL-OXIDE ELECTRODE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impedance of sealed nickel/cadmium cells around a cell e.m.f. of 0.0 V was measured at five different temperatures between � 10 and +30 °C. The results show that the behaviour is similar at all temperatures. Based on the experimental results, the relation between charge-transfer resistance (Rct) and temperature (T) has been established for the Volmer reaction. Further, the value of cathodic transfer coefficient (?) has been estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonaceous nickel oxide powder samples have been synthesized from an adducted nickel beta-ketoester complex used as a ``single source precursor'' through a solution-based microwave-assisted chemical route. Comprehensive analysis of the resulting powder material has been carried out using various characterization techniques. These analysis reveal that, depending on the solvent used, either NiO/C or Ni/NiO/C composites are formed, wherein Ni and/or NiO nanocrystals are enveloped in amorphous carbon. As the components emerge from the same molecular source, the composites are homogeneous on a fine scale, making them promising electrode materials for supercapacitors. Electrochemical capacitive behavior of these oxide composites is studied in a three-electrode configuration. With a specific capacitance of 113 F g(-1), Ni/NiO/C is superior to NiO/C as capacitor electrode material, in 0.1 M Na2SO4 electrolyte. This is confirmed by impedance measurements, which show that charge-transfer resistance and equivalent series resistance are lower in Ni/NiO/C than in NiO/C, presumably because of the presence of metallic nickel in the former. The cyclic voltammograms are nearly rectangular and the electrodes display excellent cyclability in different electrolytes: Na2SO4, KOH and Ca(NO3)(2)center dot 4H(2)O. Specific capacitance as high as 143 F g(-1), is measured in Ca(NO3)(2)center dot 4H(2)O electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance reduced graphene oxide/nickel foam (rGO/NF) composite electrodes for high-performance supercapacitors were prepared by flame-induced reduction of dry graphene oxide (GO) coated on nickel foam. Flame reduction of GO is a facile, feasible and cost-effective reduction technique, which is conducted without the need of any reductant. Most importantly, the rGO obtained by flame reduction showed a typical disordered cross-linking network and randomly distributed pores, which provide accessible routes for fast transportation of ions. It was demonstrated that the rGO/NF electrode with embedded current collector (NF) exhibited better electrochemical performance than conventional rGO film counterparts, including a high gravimetric specific capacitance of 228.6 F g-1 at a current density of 1 A g-1, excellent rate capability (over 81% retention at 32 A g-1) and high cycling stability with only 5.3% capacitance decay over 10,000 cycles of cyclic voltammetry at a ultrahigh scan rate of 1000 mV s-1. This facile method for the fabrication of rGO/NF electrodes could envision enormous potential for high performance energy storage devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal treatment of a slurry of badly crystalline (beta(bc)) nickel hydroxide at different temperatures (65-170 degrees C) results in the progressive ordering of the structure by the step-wise elimination of disorders. Interstratification is eliminated at 140 degrees C, while cation vacancies are eliminated at 170 degrees C. A small percentage of stacking faults continue to persist even in `crystalline' samples. Electrochemical investigations show that the crystalline nickel hydroxide has a very low (0.4 e/Ni) reversible charge storage capacity. An incidence of at least 15% stacking faults combined with cation vacancies is essential for nickel hydroxide to perform close to its theoretical (1 e/ Ni) discharge capacity. (c) 2005 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impedance of sealed nickel/cadmium cells is measured at low states-of-charge that correspond to a cell e.m.f. range of 0.0 to 1.3 V. The results show that the impedance exhibits a pronounced maximum between 0.3 and 0.45 V. It is concluded that the impedance maxima are due to physicochemical processes taking place at the nickel oxide electrode. The impedance of the nickel oxide electrode is dominated by three different phenomena: (i) a Ni(II)/Ni(III) reaction between 1.3 and 0.8 V; (ii) a double-layer impedance between 0.8 and 0.3 V; (iii) a hydrogen evolution reaction between 0.3 and 0.0 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The internal resistance of a stabilized alpha-nickel hydroxide electrode is found to be lower than that of a beta-nickel hydroxide electrode as shown from studies of the open-circuit potential-time transients at all states-of-charge. Nevertheless, the self-discharge rates of the former is higher. Gasometric studies reveal that the charging efficiency of the alpha-nickel hydroxide electrode is higher than that of the beta-nickel hydroxide electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an indium tin oxide (ITO) electrode-based Ru(bPY)(3)(2+) electrochemiluminecence (ECL) detector for a microchip capillary electrophoresis (CE). The microchip CE-ECL system described in this article consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate with an ITO electrode fabricated by a photolithographic method. The PDMS layer was reversibly bound to the ITO electrode plate, which greatly simplified the alignment of the separation channel with the working electrode and enhanced the photon-capturing efficiency. In our study, the high separation electric field had no significant influence on the ECL detector, and decouplers for isolating the separation electric field were not needed in the microchip CE-ECL system. The ITO electrodes employed in the experiments displayed good durability and stability in the analytical procedures. Proline was selected to perform the microchip device with a limit of detection of 1.2 muM (S/N = 3) and a linear range from 5 to 600 muM.